Diamond Color Optimization

Process flow

Today available:

Colored diamonds on the market usually have many negative phenomena: dark zones and pale zones. Sometimes diamond cutters have no idea now to optimize color by smart cutting.

© 2007 OctoNus Ltd & Diamond

Optical phenomena modeling

It was not possible to remove these diamonds from their settings. However an approximate 3D modeling clearly shows that a saturated princess cut and a worse radiant cut can be polished from a diamond with the same spectrum.

© 2007 OctoNus Ltd & Diamond

Process flow

- 1. Preparation of a rough diamond
- 2. Rough scanning and allocation
- 3. Shape and size preliminary considerations
- 4. Taking pictures and obtaining their RGB data
- 5. Recording transmission spectra
- 6. Calculations of absorption spectra
- 7. Importing spectrum into DiamCalc. Spectrum adjustment
- 8. Preliminary shapes color check
- 9. Optimization by color metrics
- 10. Expert consideration of optimization results
- 11. Final allocation and final decision
- 12. Documenting of the final stone

Preparation of a rough diamond

Visual observation
 Color distribution study
 Polishing windows
 Control of windows

Rough scanning and allocation

- Helium diamond model construction
- Check of model accuracy
- Inclusions allocation
- Polished diamonds allocation
- Choosing one or two prospective shapes

Library of shapes

<u>Designer Cuts gallery</u> <u>DiamCalc Internal Cuts gallery</u> <u>External Cuts gallery (DII)</u> http://www.octonus.com/oct/gallery/external.php

© 2007 OctoNus Ltd & Diamond

Cushions examples

Polished diamonds allocation

Two different cushions

Taking pictures and obtaining their RGB data

- Use of a light table
- Stone and camera positions
- Background color correction
- Camera settings
- Picture quality check
- Obtaining stone/background RGB pairs in Adobe PhotoShop

Use of light table

Stone and camera positions

Stone/background RGB pairs

Recording transmission spectra

- Spectrometer settings
- Reference spectrum recording
- Sample directions 1 and 2 transmission spectra recording
- Calculation of sample transmission 1 and 2 spectra
- Visual check of spectral curves

Visible range spectrometers

Lambda 35 or SF-56A

Sample position on the holder

Sample directions 1 and 2 transmission spectra recording

Calculations of absorption spectra

- Import transmission file to the Microsoft Excel template
- Input sample thickness
- Visual check and comparison of absorption spectra
- Saving .txt absorption files
- Importing spectrum into DiamCalc

Calculation of sample absorption 1 and 2 spectra

46		•••••	₿ 4	- ' Z* A* 🛄	100%	• 4	, Ariai			• 10 • 15 1	<u>n</u> m 🖹 🗐 🗐		70 J .00 +.0 1	- 10
E		F G H	1.	I K	L	M	0	Р	Q	R	S T	U	V W	X Y
4	e peference spect													
•		a carri			1									
	Input data		. 2	Set samp	le thi	скп	ess	Calculat	ioi	1			Output data	to DMC
	Sample thickness in mm	5.49												
	Reference spectrum San	ple spectrum	-	Reflection coef	fisiont	Tra	ansmission	9/,		Absorption coe	fficient		Absorption co	ficient
		elenght, nm intersity		wavelenght, nm			velenght, nm	, л Т, %		wavelenght, nm	A, mm ⁻¹	-	wavelenght, nm	A. mm ⁻¹
	3 0 309.5	300 0			0.185529	wa	300	0.2		300	0.344654181		370	0.115
	301 307.9	301 0	D			her		0.2		301	0.344695755		371	0.118
	302 313.3	302	7	aste san	0.185344	Jec	302	0.2		302	0.344737136	·	372	0.120
	303 315	303 🦊 0			0.185252		303	0.2		303	0.344778326		373	0.123
	304 315	304 0			0.18516		304	0.2		304	0.344819325		374	0.126
	305 315	305 0		305	0.185069		305	0.2		305	0.344860134		375	0.129
	Reference spectr	um			Samela	traner	nission, %			306	0.344900753		376	0.130
	Telefende abecu	um	-		Sample	transn	lission, 76			307	0.344941183		377	0.130
	80001		2	80 1					_	308 309	0.344981424	S	378	0.131
	70200 -	^		70		_			_	310	0.345061343	0	380	0.132
	60000	C I		60	<u> </u>				_	311	0.345101021	2	381	0.134
	spoo -			50	(_	312	0.345140513		382	0.139
	4000			10 A	1				_	313	0.345179819		383	0.141
	xxxx-			» V					_	314	0.345218939		384	0.141
	2000-			20					_	315	0.345257875		385	0.140
	1000-			10					_	316	0.345296626	S	386	0.137
			_	- • 						317	0.345335193		387	0.134
	300 400 900 600	700 800 90 <mark>)</mark>		300 400	500	600	700	800	900	318	0.345373577		388	0.132
_	320 308.9	320 0		320	0.183749		320	0.2		319	0.345449796		390	0.131
-	320 300.5	320 0		520	0.103745		320	0.2	_	320	0.345487633		391	0.133
	Sample spectru	m			Sample	absorp	tion, mm ⁻¹			322	0.345525289		392	0.134
										323	0.345562764		393	0.135
	60 0 00		2	0.4					1	324	0.345600059		394	0.135
	so so -	^		0.35						325	0.345637174		395	0.130
		()		0.3 -						326	0.345674111		396	0.121
		\vee \vee $/$		0.25						327	0.345710868		397	0.112
	3000	\sim		0.2						328 329	0.345747448	-	398 399	0.107
	2000			0.15						329	0.34578385		400	0.105
	1000			0.05	4					331	0.345856124		400	0.105
										332	0.345891997		402	0.111
	300 400 500 60	700 800 90		-0.05	90 500	600	0 700	800	900	333	0.345927694		403	0.111
										334	0.345963217		404	0.105
1	335 301.3	335 0		335	0.182518		335	0.2		335	0.345998565		405	0.094
	336 300.7	336 0								336	0.34603374		406	0.082
	337 300.2	337 0		-	Refraction c	:uemicie	ent dispecsi	iun		337	0.346068741		407	0.071
	338 296.9	338 0	- I							338	0.346103569	1 1	408	0.064

Visual check and comparison of absorption spectra

N3101 38 14.31ct Diamond Spectra 0.9 0.8 0.7 9.77mm 10.23mm 0.6 0.5 0.4 0.3 0.2 0.1 0 420 470 520 570 620 670 720 370 770

Importing spectrum into DiamCalc

Gem properties 🛛 🔀									
General Refraction details									
Optical properties									
Absorption (colorless) Add Absorption									
Import Absorption Spectrum Import Transmission Spectrum									
Export Absorption Spectrum									
Other Specific gravity (g/cm3)									
ОК Отмена Применить Справка									

DiamCalc plate model verification. Spectrum adjustment

- DC transmission illumination mode
- Lighting conditions and eye color adaptation
- Prism thickness
- Color information panel
- Plate and background RGB coordinates
- Light brightness adjustment with photo RGB
- Spectrum adjustment
- Prism and photo color verification
- Selecting between spectra 1 and 2

DC transmission illumination mode

Color information panel

Spectrum adjustment

2	Jntitlet - DiamCalc	
File	View Options Cut Gemmaterial Help	
₽1		
	Prism AGS_2005 -	
Ø	Proportions Advanced Advanced 2 Cut Quality	
*	Gem properties	
<u>.</u>	General Refraction details Absorption	
8 *	Baseline 0.005 A A A Multiply coefficient 1.00000 Multiply	
	Spectrum: wave absorption 370 0.500 0.4 Scanned reports	
	372 0.500 373 0.500 0.3 Man	
	376 0.500 377 0.500 270 0.500	
	ОК Отмена Применить Справка -2.35ct (-718%)	
Q	Angle, ° 🔄 💽 🛞 🔄 🕂 🕂 🔇 🐨 🛞 📥 Rotate: 🕁 🖑 🐨 eve right	
For H	telp, press F1 DMC(500 x 500); AVI(496 x 496)	

Prism and photo color verification

Prism RGB verification

Background RGB verification

Preliminary shapes color check

- Standard and external parametrical cuts
- ASCII cuts import
- Standard lighting conditions
- DiamCalc color statistics panel
- Manual proportions adjustment
- Selecting cuts for computer optimization

Standard, external parametrical cuts and ASCII cuts

Standard lighting conditions

Dialite black BG

Jewelry Shop

Gretag Macbeth Judge II

DiamCalc color statistics panel

Choosing proportions to be optimized

- For parametrical cuts
- For ASCII cuts
- Selection of optimization ranges and steps

Choosing proportions to be optimized and to be fixed for parametrical cuts

- For internal DiamCalc cuts main proportions for optimization are:
- pavilion angle
- crown angle
- table diameter
- Iower facets depth

For external DiamCalc cuts:

- pavilion front angle and pavilion flank angle (or Moon facet angle and Moon rotate angle for Oval cut)
- pavilion angle
- crown angle
- table diameter
- Iower facets depth

Choosing proportions to be optimized and to be fixed for ASCII cuts

ASCII cuts are not parametrical and DiamCalc allows changing:
pavilion height
crown height
girdle thickness

Optimization by color metrics

- DiamCalc optimization panel settings
- DiamCalc color metrics
- Optimization time
- Optimization results table
- Graphical representation of optimization results

DiamCalc optimization panel settings

Expert consideration of optimization results

- Selecting extremum points of optimization results
- Work with rendering images
- Check in various standard lighting conditions
- Tilting and movie options
- Negative optical effects
- New parameters for computer optimization

Lighting conditions

© 2007 OctoNus Ltd & Diamond

Second stage of computer optimization

- Microanalyses parameters
- Graphical representation of optimization results
- Work with rendering images

Fixing one proportions set

- Check in different lightings
- Check movie and tilting
- Check optical phenomena
- Check proportions, angles and azimuths
- Export to ASCII file

Final allocation

- Rough optimization with fixed proportions
- Expert check of the new plan
- Cutting instructions and final plan report

Importing optimized DiamCalc cut to Pacor Client

Front view

Rough 5.00 ct Optimized cushion 3.03 ct

Top view

Final cutting report

60002 2 5.00ct General information

Model	Cushion	
Report date	11.12.2007	
Weight, ct	3.00, 3.0000	
Width, mm	7.221	
Length, mm	8.021	
L/W ratio	1.111	
Total height	5.335 mm, 73.87 %	

Main parameters

Pavilion depth	% mm	46.93 3.389
Crown height	% mm	15.67 1.131
Table	% mm	73.06 5.538
Culet	% mm	0.00
Girdle thickness: Bezel Girdle thickness: Valley	%	11.27 3.74
Girdle thickness: Bezel Girdle thickness: Valley	mm mm	0.814 0.270

Facets' azimuths and slope angles

Principles of diamond color grading

Color grading in a Lab

/2 /4 /6 /8 /10 /12 /14 VALUE/CHROMA

Documenting of the final stone

- Polished stone scan
- Photo in the light box
- Polished stone DiamCalc model
- Gemological laboratory report
- Documenting all deviations from the plan

Final stone at different lights

Meda lightbox

G M Judge II black BG

G M Judge II white BG

G M Judge II black BG

Main advantages of color optimization

Better color appearance Avoid negative optical phenomena Better color grade Better yield Predictable results Control from planning to final stage Modeling of existent negative phenomena